
Trends Driving New Processing Architectures
With the rapid expansion of applications that can be characterized 
by dataflow processing, such as natural-language processing and 
recommendation engines, the performance and efficiency challenges of 
traditional, instruction set architectures have become apparent. To address 
this and enable the next generation of scientific and machine-learning 
applications, SambaNova Systems has developed the Reconfigurable 
Dataflow ArchitectureTM, a unique vertically integrated platform that is 
optimized from algorithm to silicon. Three key long-term trends infused 
SambaNova’s effort to develop this new accelerated computing 
architecture. 

First, the sizable, generation-to-generation performance gains for multi-
core processors have tapered off. As a result, developers can no longer 
depend on traditional performance improvements to power more complex 
and sophisticated applications. This holds true for both CPU fat-core and 
GPU thin-core architectures. A new approach is required to extract more 
useful work from current semiconductor technologies. Amplifying the gap 
between required and available computing is the explosion in the use of 
deep learning. According to a study by OpenAI, during the period between 
2012 and 2020, the compute power used for notable artificial intelligence 
achievements has doubled every 3.4 months.

Second, is the need for learning systems that unify machine-learning training 
and inference. Today, it is common for GPUs to be used for training and CPUs 
to be used for inference based on their different characteristics. Many real-life 
systems demonstrate continual and sometimes unpredictable change, which 
means predictive accuracy of models declines without frequent updates. 
An architecture that efficiently supports both training and inference enables 
continuous learning and accuracy improvements while also simplifying the 
develop-train-deploy, machine-learning life cycle.

Finally, while the performance challenges are acute for machine learning, 
other workloads such as analytics, scientific applications and even SQL data 
processing all exhibit dataflow characteristics and will require acceleration. 
New approaches should be flexible enough to support broader workloads 
and facilitate the convergence of machine learning and HPC or machine 
learning and business applications.
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Key Attributes for a Next-Generation Architecture
Through academic research, analysis of technology trends and knowledge developed in the design process, SambaNova 
identified the following key attributes to enable highly efficient dataflow processing.

• Native dataflow — Commonly occurring operators in machine-learning frameworks and DSLs can be described in terms 
of parallel patterns that capture parallelizable computation on both dense and sparse data collections along with 
corresponding memory access patterns. This enables exploitation and high utilization of the underlying platform while 
allowing a diverse set of models to be easily written in any framework of choice. 

• Support for terabyte-sized models — A key trend in deep-learning model development uses increasingly large model 
sizes to gain higher accuracy and deliver more sophisticated functionality. For example, leveraging billions of data-
points (referred to as parameters) enables more accurate Natural Language Generation. In the life sciences field, 
analyzing tissue samples requires the processing of large, high-resolution images to identify subtle features. Providing 
much larger on-chip and off-chip memory stores than those that are available on core-based architectures will 
accelerate deep-learning innovation.

• Efficient processing of sparse data and graph-based networks — Recommender systems, friend-of-friends problems, 
knowledge graphs, some life-science domains and more involve large sparse data structures that consist of mostly zero 
values. Moving around and processing large, mostly empty matrices is inefficient and degrades performance. A next-
generation architecture must intelligently avoid unnecessary processing.

• Flexible model mapping — Currently, data and model parallel techniques are used to scale workloads across the 
infrastructure. However, the programming cost and complexity are often prohibiting factors for new deep-learning 
approaches. A new architecture should automatically enable scaling across infrastructure without this added 
development and orchestration complexity and avoid the need for model developers to become experts in system 
architecture and parallel computing.

• Incorporate SQL and other pre-/post data processing — As deep learning models grow and incorporate a wider variety 
of data types, the dependency on pre-processing and post-processing of data becomes dominant. Additionally, the 
time lag and cost of ETL operations impact real-time system goals. A new architecture should allow the unification of 
these processing tasks on a single platform. 

A New Approach: SambaNova Reconfigurable Dataflow ArchitectureTM

The SambaNova Reconfigurable Dataflow Architecture™ (RDA) is a computing architecture designed to enable the next 
generation of machine learning and high performance computing applications. The Reconfigurable Dataflow Architecture 
is a complete, full-stack solution that incorporates innovations at all layers including algorithms, compilers, system 
architecture and state-of-the-art silicon.

The RDA provides a flexible, dataflow execution model that pipelines operations, enables programmable data access 
patterns and minimizes excess data movement found in fixed, core-based, instruction set architectures. It does not have a 
fixed Instruction Set Architecture (ISA) like traditional architectures, but instead is programmed specifically for each model 
resulting in a highly optimized, application-specific accelerator.

The Reconfigurable Dataflow Architecture is composed of the following:
SambaNova Reconfigurable Dataflow UnitTM is a next-generation processor designed to provide native dataflow processing 
and programmable acceleration. It has a tiled architecture that comprises a network of reconfigurable functional units. 
The architecture enables a broad set of highly parallelizable patterns contained within dataflow graphs to be efficiently 
programmed as a combination of compute, memory and communication networks. 

SambaFlowTM is a complete software stack designed to take input from standard machine-learning frameworks such as 
PyTorch and TensorFlow. SambaFlow automatically extracts, optimizes and maps dataflow graphs onto RDUs, allowing high 
performance to be obtained without the need for low-level kernel tuning. SambaFlow also provides an API for expert users 
and those who are interested in leveraging the RDA for workloads beyond machine learning.

SambaNova Systems DataScaleTM is a complete, rack-level, data-center-ready accelerated computing system. Each 
DataScale system configuration consists of one or more DataScale nodes, integrated networking and management 
infrastructure in a standards-compliant data center rack, referred to as the SN10-8R.

https://en.wikipedia.org/wiki/Domain-specific_language
https://en.wikipedia.org/wiki/Extract,_transform,_load


Progress against the challenges outlined earlier would be limited with an approach the solely focuses on a new silicon 
design or algorithm breakthrough. Through an integrated, full-stack solution, SambaNova is able to innovate across layers to 
achieve a multiplying effect. Additionally, SambaNova DataScale leverages open standards and common form factors to 
ease adoption and streamline deployment.

Motivations for a Dataflow Architecture
Computing applications and their associated operations require both computation and communication. In traditional 
core-based architectures, the computation is programmed as required. However, the communications are managed by 
the hardware and limited primarily to cache and memory transfers. This lack of ability to manage how data flows from one 
intermediary calculation to the next can result in excessive data transfers and poor hardware utilization. 

The SambaNova Reconfigurable Dataflow Architecture provides an alternative approach where the communications can 
be programmed and optimized to best suit how data should transit a series of computations. Figure 1 shows a few 
commonly occurring operations or parallel patterns. The orange circles show the computation needs that which are 
programmed on any architecture. More importantly, the arrows and boxes capture the dataflow required by each 
pattern’s inputs and outputs. Even in these few examples, dataflow patterns vary widely as shown (e.g., one-to-one, many-
to-one) demonstrating the opportunity that programmable dataflow can provide.

Figure 1 - Example Parallel Patterns: Map, Zip and Reduce

Dataflow programming of RDUs is provided by SambaFlow, which uses spatial programming. Spatial programming involves 
configuring the physical resources of the RDU so that data progresses efficiently in parallel across the fabric of the chip. 
Through fast reconfiguration, SambaFlow can also program the sequence of instructions (layers) running on the chip at a 
specific time. By incorporating both the sequence of instructions and the location of allocated resources, SambaFlow can 
determine the most efficient layout of a compute graph to create a pipelined accelerator specific to the desired workload. 
The impact is to achieve much higher throughput, higher hardware utilization and lower latency. In contrast, implementing 
a complex compute graph on core-based architecture requires executing a large number of sequential instructions, where 
there is no optimization of dataflow for a particular workload.



Overcoming Memory Bottlenecks with Dataflow
Traditional hardware architectures operate on a stream of low-level instructions that not only have poor energy efficiency, 
but also force a kernel-by-kernel programming model for dataflow-oriented workloads. For dataflow-oriented workloads 
such as machine learning and HPC, this kernel-by-kernel execution model can cause excess data and instruction 
movement that results in processor utilization, which is a small fraction of the theoretical peak FLOPs.

To look at this further, Figure 2 shows an extremely simple, logical compute graph for a convolution network that consists of 
just five kernels. Figure 3 shows the execution sequence of this convolution graph on a traditional core-based architecture. 
During execution, each kernel must be loaded onto the CPU or GPU, data and weights are read from memory, calculations 
are performed and the output results are written to memory. The process then repeats for each stage, multiplying the 
amount of data movement and consuming large amounts of memory bandwidth.

Figure 2 - Simple convolution graph

Figure 3 - Core-based kernel by kernel execution

For many workloads, adequate computing power may be available. However, excess data movement leads to poor 
hardware utilization and intractable training times. As a result, researchers and developers often need to limit their algorithm 
designs to those that they can afford to train.

In contrast, the SambaNova Reconfigurable Dataflow Architecture creates custom processing pipelines that allow data 
to flow through the complete computation graph. It uses a spatial programming model to optimize compute layout and 
minimize data movement to achieve high hardware utilization.

Figure 4 shows the execution of the same convolution graph on a Reconfigurable Dataflow Unit. The primary RDU elements, 
Pattern Compute Units (PCUs), Pattern Memory Units (PMUs) and the switch fabric that are described in more detail in the 
next section, provide the resources for the graph execution. These elements are programmed by SambaFlow to provide 
dataflow patterns such as many-to-one, one-to-many, broadcast, etc. as required to support each kernel’s unique 
requirements. Spatial programming techniques are applied to ensure that the layout of the operations on the RDU minimizes 
data movement to achieve high efficiency.



 

Figure 4 - RDU dataflow execution

When an application is launched, SambaFlow performs a one-time configuration to map the entire model onto RDUs. 
The entire system performs as a pipeline with different parts of the RDUs executing different layers of a model, working 
simultaneously with different data at each stage. Data is able to flow through each layer unobstructed and avoid the 
latency of context switching and memory access shown in Figure 3.

Flexibility and Reconfigurability with Dataflow
The SambaFlow optimizations described above and programmability of the RDU allow it to be optimized and configured 
for a variety of workloads across machine learning, scientific computing and other data-intensive applications. Rapid 
reconfiguration enables the architecture to be quickly repurposed for new needs or to adapt to the latest algorithm 
breakthroughs.

These are key advantages over fixed ASIC designs that can require years to develop and cannot be modified for algorithm 
changes or different workloads. At the other end of the spectrum, are FPGAs, which are highly reconfigurable. In contrast to 
the time-consuming, complex, low-level programming and long compilation times of FPGAs, RDUs can be reconfigured in 
microseconds. 

This level of flexibility and reconfigurability gives programmers the ability to work in high-level DSLs while providing enhanced 
execution efficiency, simplified compilation and performance. 

Advantages of the dataflow approach:
• Less data and code movement reduces memory bandwidth needs and enables the use of much larger, terabyte-sized 

attached memory for large model support.
• Simultaneous processing of an entire graph in a pipelined fashion enables high utilization across a broad range of 

batch sizes and eliminates the requirement to use large batch sizes to achieve acceptable efficiency.
• High on-chip memory capacity and localization, as well as high internal fabric bandwidth enable theability to run very 

large models at high performance.
• Pipeline processing on RDUs provides predictable, low-latency performance.
• Hierarchy of this architecture simplifies compiler mapping and significantly improves execution efficiency.



SambaNova Cardinal SN10™ Reconfigurable Dataflow Unit 
SambaNova Systems Cardinal SN10™ Reconfigurable Dataflow Unit is the engine that efficiently executes dataflow graphs. 
The RDU consists of a tiled array of reconfigurable processing and memory units connected through a high-speed, three-
dimensional on-chip switching fabric. When an application is started, SambaFlow configures the RDU elements to execute 
an optimized dataflow graph for that specific application. Figure 5 shows a small portion of an RDU with its components 
described below.

Figure 5 - Simplified RDU architecture and components

Pattern Compute Unit (PCU) — The PCU is designed to execute a single, innermost-parallel operation in an application. The 
PCU data-path is organized as a multi-stage, reconfigured SIMD pipeline. This design enables each PCU to achieve high-
compute density and exploit both loop-level parallelism across lanes and pipeline parallelism across stages.

Pattern Memory Unit (PMU) — PMUs are highly specialized scratchpads that provide on-chip memory capacity and perform 
a number of specialized intelligent functions. The high PMU capacity and distribution throughout the PCUs minimizes data 
movement, reduces latency, increases bandwidth and avoids off-chip memory accesses.

Switching Fabric — The high-speed switching fabric that connects PCUs and PMUs is composed of three switching networks: 
scalar, vector and control. These switches form a three-dimensional network that runs in parallel to the rest of the units 
within an RDU. The networks differ in granularity of data being transferred; scalar networks operate at word-level granularity, 
vector networks at multiple word-level granularity and control at bit-level granularity.

Address Generator Units (AGU) and Coalescing Units (CU) — AGUs and CUs provide the interconnect between RDUs and 
the rest of the system, including off-chip DRAM, other RDUs and the host processor. RDU Connect™ provides a high-speed 
path between RDUs for efficient processing of problems that are larger than a single RDU. The AGUs and CUs working 
together with the PMUs enable RDA to efficiently process sparse and graph-based datasets.

Reconfigurability, exploitation of parallelism at multiple levels and the elimination of instruction processing overhead gives 
RDUs their significant performance advantages over traditional architectures.
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SambaFlow™
SambaFlow™, the software component of the Reconfigurable Dataflow Architecture, is designed to be easy-to-use way 
to shield algorithm developers from low-level tuning needs that are common on other architectures. Users can maximize 
productivity by continuing to work in high-level frameworks like PyTorch and TensorFlow and not worry about architectural 
details of the RDU. It also provides an alternate User Graph interface for expert users and those who are interested in 
leveraging DataScale Systems for workloads beyond machine learning.

SambaFlow connects to machine-learning frameworks and analyzes models to build dataflow graphs. It then automatically 
decomposes the dataflow graphs with the knowledge of the resources required to execute the graph. This automated 
process results in a fully optimized, custom accelerator while avoiding low-level programming and time-consuming trial-
and-error tuning. With complete a understanding of the software stack from the model down to the processing elements, 
SambaFlow’s multi-stage tools have the advantage of being able to optimize at appropriate levels to run in the most 
efficient way. 

SambaFlow also automates the scaling of workloads across multiple RDUs. By contrast, when working with large models on 
traditional architectures, a key challenge is using data and model parallel techniques to break the workload up and spread 
it across resources. Particularly for model parallel techniques, this requires developing external frameworks or using trial-
and-error guesswork to split the model apart to achieve optimal results. Moving a model from a single processor to a large 
compute cluster often requires considerable extra development effort, orchestration and specialized expertise. Scaling out 
to a large cluster to achieve a high enough memory size can also result in a large sacrifice in utilization per device.

SambaFlow, however, provides a consistent programming model that spans from one RDU tile up to multi-system 
configurations. The ability of SambaFlow to automatically understand the underlying resources of the hardware and directly 
optimize a model provides the unique advantage of fully automating both multi-chip, data-parallel and model-parallel 
support. Developers allocate one or more RDUs to a model, then SambaFlow compiles to automatically provide the most 
efficient execution possible with the given set of resources. This enables developers to be more productive and reduces 
time to production.

SambaFlow also enables rapid reconfiguration of RDUs. For example, when model, data-source or batch-size changes are 
desired, RDUs can be reconfigured accordingly. Unlike FPGA programming, RDU reconfiguration is lightweight and can take 
10-40 microseconds depending on model complexity.

SambaFlow has several components that optimize the application and manage system resources. These components are 
shown in Figure 6 and described below. 

Figure 6 - SambaFlow components



User Entry Points – SambaFlow supports the common open-source, machine-learning frameworks, PyTorch and TensorFlow. 
Serialized graphs from other frameworks and tools are also imported here.
 
Dataflow Graph Analyzer and Dataflow Graphs — Accepts models from the frameworks then analyzes the model to extract 
the dataflow graph. For each operator, the computation and communication requirements are determined, so the 
appropriate RDU resources can be allocated later. The analyzer determines the most efficient mappings of the operators 
and communication patterns to the RDU utilizing the spatial programming model. With knowledge of both the model 
architecture and the RDU architecture, the analyzer can also perform high-level, domain-specific optimizations like node 
fusion. The output of the Dataflow Graph Analyzer is an annotated Dataflow Graph that serves as the first intermediate 
representation (IR) passed to the Dataflow Compiler.
 
Template Compiler and Spatial Templates — For cases where operators are required but not available in the existing 
frameworks, new operators can be described via a high-level, tensor index notation API. The Template Compiler will then 
analyze the operator and generate an optimized dataflow implementation for the RDU, called a Spatial Template. The 
generated template includes bindings that enable the new operator to be used directly from application code in the same 
way as built-in framework operators.
 
Dataflow Compiler, Optimizer and Assembler — This layer receives annotated Dataflow Graphs and performs high-level 
transformations like meta-pipelining, multi-section support and parallelization. It also understands the RDU hardware 
attributes and performs low-level transforms, primarily placing and routing by mapping the graph onto the physical RDU 
hardware and then outputting an executable file. As before, a spatial programming approach is used to determine the 
most efficient location of RDU resources.

Advantages of SambaFlow:
• Support for popular open-source ML frameworks such as PyTorch and Tensorflow. 
• Tight integration between algorithms, SambaFlow and RDUs results in a custom, highly parallelized accelerator that is 

uniquely optimized for each specific model.
• Push-button model compilation and optimizations allow high performance to be obtained out of the box without the 

need for hand tuning. This allows rapid experimentation with high-performance models without deep-performance and 
hardware-tuning expertise.

• Automated data and model parallel mapping simplifies scaling from test bed to large-scale production by using the 
same programming model as on a single device, without requiring the kind of careful and tedious internode cluster 
programming needed for memory-constrained devices.

• Spatial programming model automatically assigns resources in the most efficient manner to provide a complete 
processing pipeline that enables high RDU utilization by minimizing data movement and off-chip accesses.

• Secure multi-tenancy and concurrent multi-graph execution provides seamless scale-up and scale-out flexibility for best 
utilization of resources. Application isolation support ensures not just multiple applications but also multiple users, and 
thus support for resource management tools such as Slurm. 

• High-performance data transfer with protocol support for RoCE, RDMA, Ethernet and Infiniband protocols ensures that 
models requiring data transfer between devices can run at full speed.

• Virtualization and container support means you can securely use and deploy Docker, Kubernetes or VM environments.

Large Model Use Cases on RDA
Across a variety of applications, there is a trend towards models that require large memory capacities although the 
drivers vary by usage. For example, in NLP, a very large number of parameters enables the summarization of complex text 
passages or generation of improved text suggestions. With recommender systems, larger memory sizes support rich user 
and catalog embeddings to achieve higher recommendation accuracy and conversion rates. In computer vision, larger 
memory is required for the high-resolution images and associated activations for uses like pathology, medical scans and 
astronomy. 

To support large models, a common approach is to partition a model up into small parts each of which fitting into GPU 
memory. The latest large NLP models are often trained on configurations built with thousands of GPUs. Sheer size, cost and 
complexity serve to limit innovation to large, well-funded organizations. 

By contrast, massive models that previously required 1,000+ GPUs to run are able to run on a single SambaNova Datascale 
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System. This is made possible by the dataflow processing model and large on-chip capacity that reduces off-chip 
communication and pressure on memory bandwidth and has allowed the use of terabyte-sized attached memory. Running 
models across multiple RDUs in a system is also simplified through automated data and model parallel scaling.

SambaNova publishes articles regularly about large models, scaling, performance and other topics.  To learn more, please 
see https://sambanova.ai/articles/.

Multi-Tenant and Concurrent Applications on RDA
While DataScale systems can be used for large-scale applications as described earlier, they can also support multiple 
concurrent applications and provide multi-tenant isolation as shown in Figure 7. Teams or applications may only require a 
portion of a system, and organizations can use the multi-tenant functionality to provide machine-learning, private-cloud 
resources that serve multiple departments or customers. It is also possible to dedicate some portion of the RDU to training 
updated models while other portions execute previously trained models for inferencing and results generation.

 

Figure 7 - Supporting multiple users or workloads simultaneously

Model Life Cycle Management on RDA
Algorithm development is, of course, only a small part of successful production operations as shown in Figure 8. Capabilities 
of the RDA described earlier can simplify and facilitate additional parts of the machine-learning life cycle.

For example, RDUs enable the integration of pre- and post-processing to avoid additional ETL overhead. Reconfigurability 
facilitates rapid iteration on model development by experimentation and adjustments to models in the development and 
testing phase. Support in RDUs for both high throughput, large batch-size training as well as small batch-size inference 
means that models can combine training and inference in a continuous learning or incremental training mode. This allows 
for new and interesting types of models to be developed that are not possible in conventional life cycle flows.

https://sambanova.ai/articles/
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Figure 8 - Optimization across the complete life cycle

Summary 

SambaNova DataScale systems and SambaFlow provide a unique vertically integrated platform that is optimized from the 
algorithm, through the compiler, and down to the silicon to achieve breakthrough performance and flexibility for innovators 
creating the next generation of machine-learning and deep-learning applications. Contact SambaNova to learn more 
about accelerating your machine-learning and HPC applications.
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